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Abstract: Monitoring of inland waters is a major topic in terms of water quality and 
environmental issues. We suggest that hyperspectral remote sensing can provide a valuable 
data source to monitor important water parameters. In this study, we sampled hyperspectral 
data on The River Elbe from a research ship. The data, which we collected, contains 1383 
datapoints and demonstrates similar spectral behavior to the data in the literature. A 
Random Forest regression shows that concentration of chlorophyll a, green algae, and 
diatoms is predictable based on hyperspectral data with a R² of around 80%. In general, the 
results reveal the potential of estimating chlorophyll a concentration and concentration of 
different algae taxa with machine learning approaches. For prospective studies, we intend to 
develop a generic model approach which is able to process various types of input data, 
measured at different inland waters. 

 

1 Introduction 

During the last decades, monitoring of inland waters has become a major research topic in terms 
of water quality and environmental issues. The monitoring of area-wide water bodies, is highly 
data intensive. Most of the currently available datasets to evaluate the quality of inland waters 
consist of sampled point data. To derive information on the entire water body, this data can be 
unreliable. Recent attempts towards such an area-wide coverage of water quality monitoring 
have included the application of hyperspectral sensors to gather image-based, remote sensing 
data. Chlorophyll a (Chl a) and turbidity function as indicators of algae existence which in turn 
characterize water quality and nutrition supply. 
The first approaches to monitor Chl a concentrations with hyperspectral measurements were 
undertaken by NEVILLE & GOWER (1977). They discovered the correlation between the 
absorption peak as a minimum of the reflectance at a wavelength of 685 nm and the Chl a 
concentration in freshwater. GITELSON & KEYDON (1990) and GITELSON (1992) described 
hyperspectral charts of different types of inland waters. They sampled hyperspectral 
spectrometer-based data in different climate regions during various seasons and at several trophic 
states. According to their research, three significant extrema in the charts exist. 
One maximum corresponds to the Chl a peak (minimum of the reflectance) discovered by 
NEVILLE & GOWER (1977), although it lays in a range between 670 nm to 680 nm. Another one 
covers the range between 550 nm to 570 nm as a maximum of the reflectance. It is identified as a 
backscattering feature from suspended particles in water (GITELSON 1992). The last maximum 
varies in the range between 685 nm to 700 nm. The latter increases in the course of higher Chl a 
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concentration (GITELSON & KEYDON 1990). Thereupon, GITELSON (1992) figured out that the 
maximum of the reflectance between 675 nm and 730 nm shifts towards longer wavelengths with 
increasing Chl a concentration. 
GITELSON (1992) proposed two different types of approaches to predict Chl a concentration: the 
first one is based on the peak height in the range between 675 nm to 730 nm. The second one 
relies on the ratio of specific bands. The ratio approach has been pursued and enhanced 
afterwards by several researchers (see e.g. SCHALLES et al. 1998). MANNHEIM et al. (2004) 
presented an area-based approach, where the area under the peak without the baseline correlates 
with the Chl a concentration. RUNDQUIST (1996), FRASER (1998), CRAIG et al. (2006) attempted 
to include derivatives up to the fourth order, to enhance the predictability of Chl a. 
Besides the Chl a concentration, the differentiation of algae taxa is an important topic of 
modeling environmental processes and water quality. Especially, the cyanobacteria, commonly 
known as blue-green algae, is a taxon, where a distinction is necessary. It contains several 
species that can be harmful for animals and human beings when they disperse in drinking water 
reservoirs. SIMIS et al. (2007) conducted lots of research about cyanobacteria and their unique 
pigment phycocyanin. The latter features its typical absorption peak at 620 nm. Spectral 
signatures of further algae taxa were researched e.g. by GITELSON et al. (1999) and HUNTER et al. 
(2008) in field experiments as well as laboratory experiments such as artificial tanks. In the 
laboratory studies, they varied the taxa and the Chl a concentration to observe the change in the 
spectral reflectance signatures. According to their studies, different algae taxa can be 
distinguished based on the hyperspectral signature. At this point, the hyperspectral sensor 
demonstrates enhanced performance over the multispectral sensor (HUNTER et al. 2008). 
In general, it can be stated: the higher the Chl a concentration, the more the distinguishability 
between the algae taxa increases. HUNTER et al. (2008) also created synthetic algae cultures by 
mixing two distinct taxa within different concentrations and demonstrated that they still can be 
distinguished, while the spectral signature appears as mixture. 
GITELSON (1999) remarked that the occurrence of suspended particular organic matter (SPOM), 
suspended particular inorganic matter (SPIM), and colored dissolved organic matter (CDOM) 
challenge the prediction of Chl a concentration with spectral information. The three matters 
occur in most inland water bodies. They influence the backscattering behavior by interacting 
with the backscattering of chlorophyll and other algal pigments (GITELSON et al. (1999)). 
Generally, SPIM and SPOM increase the reflectance of the water body (HUNTER et al. 2008). To 
handle high SPIM and SPOM concentration in the context of predicting Chl a, ZHOU et al. 
(2013) proposed a multi-band ratio. Reviews of most of the available approaches for Chl a 
prediction and prediction of several taxa can be found in MATTHEWS et al. (2010) and PALMER et 
al. (2015). 
In this contribution, we present a hyperspectral dataset with reference data, sampled on The 
River Elbe. We propose a basic machine learning approach to investigate the Chl a concentration 
in a first step. In a second step we focus on the distinction of two algae taxa: the Green Algae 
and the Diatoms. The preliminary regression results are conducted with a standardized machine 
learning regressor, the Random Forest (RF) regression. 
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2 Data Acquisition & Data Processing 

The data, presented in this contribution, was sampled with a hyperspectral sensor mounted on a 
research ship (Fig. 1), along The River Elbe from Bad Schandau to Geesthacht in Germany. The 
data acquisition was embedded in the scope of the Elbschwimmstaffel, which took place in 
summer 2017 in Germany and was funded by the Federal Ministry of Education and Research 
(BMBF). We sequentially performed measurements along an approximately 500 km long section 
on The River Elbe, which result in a large set of datapoints. The applied hyperspectral sensor 
was a Cubert UHD 285 characterized by an amount of 125 bands in the range from 450 nm to 
950 nm. Additionally, the multi-sensor system PhycoSens (invention of BBE Moldaenke) 
sampled in-situ water parameters. Concentration of Chl a, diatoms, and green algae as well as 
turbidity represent the target variables. 

 
Fig. 1: Hyperspectral sensor mounted on the bow of the research ship 

The hyperspectral sensor was calibrated every 20 minutes with a white reference, i.e. spectralon, 
to compensate the varying sun altitude. Every minute we captured a hyperspectral snapshot 
within a 70° angle towards the water surface. The spectralon was placed on the railing so that a 
part of it is visible in every snapshot to control the reflectance. In addition, we equalized minor 
radiative fluctuations such as slight cloud occurrences. The reference data was sampled every 
five minutes by the PhycoSens. To expand the dataset, we interpolated the reference data 
linearly. Since the measured Chl a concentration has changed in a continuous matter, the 
interpolation is feasible in practice. 
During the data processing, the measured mean spectra was calculated by manually selecting an 
area, which was undisturbed by bubble formations, shadows, or waves. The effect of bubbles or 
waves can be seen in Fig. 2, resulting in a high variance and higher reflection values. In a next 
step, we applied two distinctive types of cuts.  
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First, based on the spectralon reflectance values of the calibration, we removed outlying images, 
whose reflectance on the spectralon differed around the factor of 0.3. The outlying behavior was 
mainly affected by shadow occurrence caused by ship turnings, bridge crossings, or sudden 
cloud coverages. Second, data points, sampled by the PhycoSens, with a Chl a concentration 
above 200 µg/l, were dismissed. These values exceed the measurement range. In total, we 
removed more than 500 of our former 2000 hyperspectral images.  
  

Finally, the dataset consists of 1383 datapoints. Each of these refers to 105 hyperspectral values 
in the range between 486 nm to 902 nm and four measured parameters by the PhycoSens. The 
bands in the range between 450 nm to 485 nm and 903 nm to 950 nm were cut due to 
inconsistent behavior and noise. 

3 Methods 

For the preliminary analysis of the dataset, we perform a RF regression to predict the Chl a 
concentration based on hyperspectral data. The modeling of the green algae and the diatoms 
concentration, follows the same approach.  
To perform the RF regression, we apply the Ranger package (WRIGHT & ZIEGLER 2017) in R. 
The model is tuned with a grid search employing the train function from the caret package 
(KUHN 2008) to find the best number of variables that are randomly sampled at each split. As 
splitting rule for the RF algorithm we process extratrees.  

Fig. 2: Left: Hyperspectral snapshot shown as a RGB image. The white area on the bottom of the
image represents the spectralon. The red and the green boxes are the selected areas to
calculate the mean reflectance. Right: The charts of the selected areas (cf. left part of the
figure). The green plot is characterized by “bubble” artefacts and a high variance. The red plot
represents undisturbed water surface 
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Several splits of the dataset are implemented: the training dataset is divided in 20, 50 and 80 
percent of the dataset. The counterpart of the dataset represents the validation dataset 
respectively.  
In addition to the splitting of the dataset, we evaluate the performance of the framework using a 
Principle Component Analysis (PCA) to reduce the dimensionality. Then, both approaches are 
trained with the first 20 components. The regression performance is expressed by the coefficient 
of determination R² and the mean absolute error MAE. 

4 Results & Discussion 

Fig. 3 shows the dataset in boxplots. Two peaks can be distinguished regarding the mean 
values:the first is in the range between 582 nm and 606 nm and the second one appears between 
714 nm and 718 nm. The first one indicates, that the peak shifts to longer wavelengths with 
increasing reflectance. In GITELSON (1990) this maximum appears in the range between 550 nm 
and 570 nm and is affected by reflectance of Chl a as well as by backscattering on suspended 
particles in water. 

 
Fig. 3:  The dataset is presented as boxplots between the wavelength of 486 nm and 902 nm over all 

1383 datapoints. The whiskers represent the extreme values 
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The River Elbe is well known for its high concentration of SPIM. It can be possible that the 
maximum shifts even further to longer wavelengths, with a growing SPIM concentration. 
However, we don’t have reference data to proof this behavior. The second peak is related to Chl 
a reflectance and is similar to values found in the literature (GITELSON 1990). The reflectance 
minimum at 678 nm represents a significant minimum, due to the absorption of Chl a and also 
suits to the literature values (GITELSON 1990).  
In addition to the main extrema, slight maxima occur at 650 nm and 822 nm respectively. The 
general reflectance of the wavelengths varies between < 1% and 7%. The highest amplitude in 
the data is located in the area around the peak between 714 nm and 718 nm. All things 
considered, the dataset shows no inconsistent behavior.  
In Fig. 4 the green line represents the mean spectrum of high Chl a concentration (>150 µg/l) and 
the blue line shows the mean spectrum of the datapoints with low Chl a concentration (< 50 
µg/l). The reflectance of the low Chl a concentration spectrum is generally lower than the high 
Chl a concentration spectrum. The global peak shifts slightly from 714 nm to 718 nm with higher 
Chl a concentration.  
Additionally, the amplitude from the minimum at 678 nm to the maximum is higher in case of 
the high Chl a concentration with respect to the lower concentration. In general, a trend can be 
observed, that an increasing concentration of Chl a, results in higher. But this may also be a 
consequence of higher concentration of suspended particles in the water.  

 
Fig. 4: Mean spectra of two different Chlo a concentration 

Tab. 1 outlines the regression results for Chl a concentration with the RF model as estimator and 
the hyperspectral data as input vector. The regressor is trained with a different amount of data. 
The quality of the RF model is shown as R² and MAE.  
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In general, the performance increases with a higher amount of training data. But using more than 
50% of the training data improves the results only slightly. Applying a PCA before the 
regression to reduce features enhances the performance. In this modeling, we pick the first 20 
components of the PCA to fit the RF model. 

Tab. 1: R² and MAE for LR and RF and PCA for the regression 

training data RF RF + PCA 

[%] R² [%] MAE [µg/l] R² [%] MAE [µg/l] 

20 65 15,2 72 13,0 

50 80 11,1 85 9,6 

70 83 10,0 87 8,3 

Tab. 2 summarizes the regression results for the estimation of green algae and diatoms 
concentration with the RF algorithm. In general, the estimation of diatoms performs better than 
the estimation of the green algae, since the range of the concentration of green algae is about 
double the range of diatom concentration. This is an important aspect when it comes to the 
training of the algorithm.  
PCA has a similar influence on the estimation of the Chl a concentration: performing a PCA 
before model fitting improves the regression results significantly because of highly correlated 
variables. 

Tab. 2: R² and MAE for Green Algae and Diatom concentration operating the RF algorithm 

training 
data 

Green Algae Green Algae + 
PCA 

Diatoms Diatoms + PCA 

[%] R² 
[%] 

MAE 
[µg/l] 

R² 
[%] 

MAE 
[µg/l] 

R² 
[%] 

MAE 
[µg/l] 

R² 
[%] 

MAE 
[µg/l] 

20 57 10,5 63 9,8 72 6,5 79 5,8 

50 69 8,6 76 7,6 79 5,3 86 4,5 

70 77 7,4 82 6,4 82 4,7 88 4,0 
 

5 Conclusion & Outlook 

In general, the results reveal the potential of estimating Chl a concentration and concentration of 
different algae taxa with machine learning approaches.	Although the river Elbe is a challenging 
inland water with high concentration in suspended particular substances, the RF performs well 
for all three target variables.  
For prospective studies, we intend to develop a generic model approach, which is able to process 
various types of input data, measured at different kinds of inland waters. The model should later 
work with hyperspectral data collected by a UAV. 
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